Visit
Thu 03/07
Sherry Yang headshot

Decision Making with Internet-Scale Knowledge

Machine learning models pretrained on internet data have acquired broad knowledge about the world but struggle to solve complex tasks that require extended reasoning and planning. Sequential decision making, on the other hand, has empowered AlphaGo’s superhuman performance, but lacks visual, language, and physical knowledge about the world. In this talk, Sherry Yang will present her research towards enabling decision making with internet-scale knowledge. First, Yang will illustrate how language models and video generation are unified interfaces that can integrate internet knowledge and represent diverse tasks, enabling the creation of a generative simulator to support real-world decision-making. Second, Yang will discuss her work on designing decision making algorithms that can take advantage of generative language and video models as agents and environments. Combining pretrained models with decision making algorithms can effectively enable a wide range of applications such as developing chatbots, learning robot policies, and discovering novel materials.

Speaker Bio

Sherry is a final year PhD student at UC Berkeley advised by Pieter Abbeel and a senior research scientist at Google DeepMind. Her research aims to develop machine learning models with internet-scale knowledge to make better-than-human decisions. To this end, she has developed techniques for generative modeling and representation learning from large-scale vision, language, and structured data, coupled with developing algorithms for sequential decision making such as imitation learning, planning, and reinforcement learning. Sherry initiated and led the Foundation Models for Decision Making workshop at NeurIPS 2022 and 2023, bringing together research communities in vision, language, planning, and reinforcement learning to solve complex decision making tasks at scale. Before her current role, Sherry received her Bachelor’s degree and Master’s degree from MIT advised by Patrick Winston and Julian Shun.